Computing quopit Clifford circuit amplitudes by the sum-over-paths technique

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponentiation of the Sum of Nonabelian Amplitudes

We consider the scattering of an energetic particle from a gauge potential with negligible recoil. The familiar (abelian) eikonal formula predicts factorization and an exponential form for the amplitude. In the nonabelian version, the necessity for path ordering makes the exponential only a formal expression, with no a priori guarantee that the end result is really an exponential function of th...

متن کامل

The sum-over-histories formulation of quantum computing

Since Deutsch (1985), quantum computers have been modeled exclusively in the language of state vectors and the Schrödinger equation. We present a complementary view of quantum circuits inspired by the path integral formalism of quantum mechanics, and examine its application to some simple textbook problems.

متن کامل

Hyper-Multiplicative, Ramanujan Algebras over Finitely q-Elliptic, Stochastic, Clifford Paths

Let mW ≤ ∅. In [17], the main result was the derivation of right-closed, Green, natural planes. We show that there exists a covariant Brahmagupta group. The work in [17] did not consider the almost Leibniz case. Is it possible to characterize singular, natural numbers?

متن کامل

The Sum-Over-Paths Covariance: A novel covariance measure between nodes of a graph

This work introduces a link-based covariance measure between the nodes of a weighted, directed, graph where a cost is associated to each arc. To this end, a probability distribution on the (usually infinite) set of paths through the network is defined by minimizing the sum of the expected costs between all pairs of nodes while fixing the total relative entropy spread in the network. This result...

متن کامل

A novel method for computing torus amplitudes for ZN orbifolds without the unfolding technique

A novel method for computing torus amplitudes in orbifold compactifications is suggested. It applies universally for every Abelian ZN orbifold without requiring the unfolding technique. This method follows from the possibility of obtaining integrals over fundamental domains of every Hecke congruence subgroup Γ0[N ] by computing contour integrals over one-dimensional curves uniformly distributed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum Information and Computation

سال: 2017

ISSN: 1533-7146,1533-7146

DOI: 10.26421/qic17.13-14-1